
Net Positive Tutorial
Building a Networked Game

What we’ll be doing
We’re going to make a ultra-simple MMO (moderately multiplayer online) dungeon crawler.
Where they can run around with their friends, attacking, enemies, each other.

Before we start

Please make sure you have Unity 2017 installed

This document is contains both instructions, and explanations. Steps for you to perform start
with a (!), and are highlighted in purple.

We will start from empty and incomplete scripts, and incrementally build up functionality. It’s OK
if you are new to coding in Unity. There will be links to live google docs for each relevant script
in the project for you to paste into your project.

The existing Photon documentation is quite good, and my tutorial loosely follows their basic
tutorial:
https://doc.photonengine.com/en/pun/current/tutorials/pun-basics-tutorial/intro

Photon Setup

Create Photon Account

(!) Register for a Photon account at
https://www.photonengine.com/en/Account/SignIn

https://doc.photonengine.com/en/pun/current/tutorials/pun-basics-tutorial/intro
https://www.photonengine.com/en/Account/SignIn

Download Template Project

(!) download the template project

(!) unzip and open with Unity

(!) Download and import ‘Photon Unity Networking’ from the Asset Store.

It’s this free one

Hit this button if it appears

Link Project with your Photon Account

(!) Sign in to your photon account
https://www.photonengine.com/en-US/Photon

https://drive.google.com/open?id=0BzsEOivZ9PwdN0FIdzRXMmQtQlk
https://www.photonengine.com/en-US/Photon

It should automatically take you to your dashboard

(!) Copy your ‘App ID’ from the dashboard...

Here’s the Dashboard, with the App ID circled

(!) Go toWindow->Photon Unity Networking->PUN Wizard

(!) Hit the ‘Setup Project’ button

(!) Paste in your app-ID

(!) Hit ‘Setup Project’

Set up the Server and Demos

(!) Go toWindow->Photon Unity Networking->Highlight Server Settings

(!) IMPORTANT! In the Inspector, set ‘Protocol’ to ‘Tcp’

It won’t work if you miss this step!

(!) Also change Region to ‘Usw’.

Go through a Photon server on the west coast instead of Europe

(!) Go toWindow->Photon Unity Networking->Configure Demos (build setup)

Now we’re ready to try Photon’s built in demos, and start developing for ourselves

Run the built-in demos, and Verify Photon is working
We’re building a multiplayer game, so we need to run multiple copies of our game. One
instance of the game can be in the editor. We make a build and run that 1 or more times to add
additional players.

(!) Go to ‘File->Build Settings…’

(it should look like this, with a bunch of scenes added)

(!) Build a Mac, or PC version Giving it the name “test”

I’m working on Mac here, so I’m making a Mac build.

It’s also a good idea to put the EXE in your taskbar (Windows), or on the dock (Mac). That way
you can quickly start a second copy of the game.

Here’s the build on the OSX dock, and the Windows taskbar respectively

Important note for Mac Users:
If you want to run multiple copies of your built game (to test more than 2 players), need to run

Once your build is finished

2-finger click on the build and choose ‘Show Package Contents’

Make an Alias of the file with the Black Icon in Contents/MacOS, or put it on the right side of your dock:

(!) Once it’s finished building, run the built game.

(!) In the resolution dialog, check “windowed”, and choose a small resolution. (like,
640x480)

DON’T run the game full screen, or at a high resolution. We must run one copy of the game for
each player to test the networking (one copy of the game can be the editor), and we really need
to be able to see all the players’ game screens.

E.g. Below, we’re running 3 copies of the demo, and 1 copy in the editor

(!) Once the build is running, also run the scene in the editor.

(!) Start, the ‘Demo Boxes’ in both the build, and the editor

Choose demo Boxes, then Load Demo in both the build, and the editor

You should be able to click and see boxes appear in both windows

Making a new game, from scratch(ish)

Connecting to Photon
To participate in a photon game, first must do 2 connection steps. a new player must first
connect to the Photon MASTER SERVER.

1st, you must connect to the Photon Master Server

Once connected to the master server, a player must join a ROOM.
In our project, there will just be 1 room that all players join.

Can’t talk to dad unless we’re both in the same room (Both you and dad are not in a room yet!)

Once connect to the master server, if you want to actually communicate/play a game with other
players, you must enter a room

ROOMS are like individual matches of a game, and players can only send and receive
messages to other players in the same ROOM**. Player can freely create, join, and leave
rooms. Photon also provides functionality to restrict who can enter a room, and when they can
enter, or to find a random available room to join. (Think, random matchmaking). In an MMO,
there might be individual rooms individual dungeons or towns.

NOTE: Photon’s own tutorial has more info about auto-joining a free room & matchmaking:
https://doc.photonengine.com/en/pun/current/tutorials/pun-basics-tutorial/intro

https://doc.photonengine.com/en/pun/current/tutorials/pun-basics-tutorial/intro

Our first Photon Game

(!) Create a new scene

(!) Create an empty gameobject, and name it ConnectionManager

>>
(!) Add a ConnectionManagerIncomplete script to the ConnectionManager object

...

https://docs.google.com/document/d/1Ur_GWU8tczAOJW280hlNDACN4J22ufarHvgUAxvnTn8/edit

...

...

(!) Run the game in the editor

I gave you an incomplete script! we’ll fix it below.

(!) CODE-ALONG : Update your script to match PhotonConnectionManagerIncomplete

Warning! If you’re skipping ahead, the above won’t be ready yet.
As a hint, you need to connect to the master server, then join/create a room

<Is this where this should go?>
Here’s more information about callbacks like OnConnectedToMaster(), and OnJoinRoom()
https://doc-api.photonengine.com/en/pun/current/interface_i_pun_callbacks.html

(!) Once the above code-along is done, Run the scene, and verify that the game view shows
you are ‘Connected as Master Client’

You should see this,

https://docs.google.com/document/d/1Ur_GWU8tczAOJW280hlNDACN4J22ufarHvgUAxvnTn8/edit
https://doc-api.photonengine.com/en/pun/current/interface_i_pun_callbacks.html

Quickly Add a floor

(!) Create a big cube for the floor, put on a checkerboard. Call it “floor”.

I Recommend you make its scale (100,1,100) and its position it at (0,-2,0)

I also recommend you put a texture on it

Creating a networked object
To start we’ll create a networked capsules whose positions and rotation will be synced across
the network. We’ll eventually turn this object into a prefab for player’s avatar.

(!) Create a capsule, (it will eventually be the player’s avatar)

(!) Name it “player_avatar”

(!) Add a PhotonView component to “player_avatar”

You can use the ‘Add Component’ button in the inspector…
OR

...

Use the Menu ‘Component->Photon Networking->Photon View’

(!) Also add a PhotonTransformView component
You can use the same menu, or inspector button

(!) Check ‘Synchronize Position’ &‘Synchronize Rotation’ on the PhotonTransformView

(!) Drag the PhotonTransformView component onto the Observed Components slot
on the PhotonView.

Drag this…

On to this!

Should look like this once dragged

Moving a networked Object

(!) Save scene and call “Game”.

(!) Open File->Build Settings…

(!) Select and delete all the scenes in build

Select and delete these

(!) Click the ‘Add Open Scenes’ button to add “Game” scene to the build.

You should now just have 1 scene in the build

(!) Build your game. again
Don’t change the name or location in the file dialog! This way, you can just use your
taskbar/dock shortcut again.

Just replace the old build! It will save you time

(!) First Run the game in the EDITOR.

Build should say, connected as Master Client

(!) Second, run the build you just made.

Build should say, connected as Regular Client

(!)Try moving “player_avatar” in the scene view of the editor with the move tool.
You should see it move on the build window too when you do!

Try moving ‘player_avatar’ in the scene view

Now the other way around

(!) Try running the build first, THEN the editor. & try moving the player in the Editor this
way.

…….It won’t work!

Build should be master, editor should be regular

About the Photon View
A Photon View component designates a game object whose state needs be synchronized
over the network. Unfortunately, it doesn’t just magically sync everything about an object,
synced information must be contained in special scripts. PhotonTransformView is one such
script that does a good job syncing position/rotation/scale over the network. Later we will write
our own script to sync our own custom player state over the network.

Why could we sometimes move the object, and other times not?
Remember our pong discussion? In networked games, game objects, (like this player) have an
owner. I.E. which of the player owns, and is responsible for an object. The player that owns
the object is the authority on its various state (like, position, rotation, etc…) and all other players
are updating their local copy of the object to match the owner’s version of the object.

Objects in the scene, are as you would expect are given to the first player who joins the room.
This first player is called the master client. In our “broken” case, the build-game owns the
player-capsule, and the editor-game is constantly updating the capsules position to reflect the
build’s version (The Photon Transform View is the culprit!, helped out by the Photon View). Our
attempts to move this object that doesn’t belong to us is being quickly overwritten by this
background process that makes its position match the own. If you pay attention to the Photon
View component in both situations, you’ll see that a checkbox will appear “Controlled Locally”
signifying whether or not the editor is the owner of a particular object.

If the editor owns the object…

If the editor DOESN’T own the object…

What we really want, is create an avatar for each connected player, and have each player be
the owner of their avatar.

Creating our own ‘Player Game Object’

(!) Create a new Folder called ‘Resources’

As many of you may know already, the contents of folder named ‘Resources’ are available to
dynamic loading with ‘Resources.Load()’

(!) Make the player_avatar a prefab by dragging it from the hierarchy into the
Resources folder in the Project tab.

It MUST go in the ‘Resources’ folder

(!) Disable the player_avatar object in the hierarchy
We will be modifying this prefab, so it will be helpful to keep it around in the scene.

https://drive.google.com/open?id=1tQuU6eWoWvP8VVOKC1m3BxEJM7rHolLZqqstECoZHAY

(!)In PhotonConnectionManagerIncomplete script, we’re going to add the following
function

void OnJoinedRoom()

{

GameObject localPlayer = PhotonNetwork.Instantiate("player_avatar", Vector3.zero,

Quaternion.identity, 0);

localPlayer.name = "local avatar";

}

Explanation:
OnJoinedRoom() is automatically called when we join a room. Now when a player first
joins a room, they’ll instantiate their own avatar object. When a player creates an object
with PhotonNetwork.Instantiate, that player owns the object.

(!) Build your game again

(!) Run the build, and the Editor..

you’ll see two new objects in the hierarchy, and you’ll be able to correctly move the one
labeled “local avatar (Clone)”.

Experiment:What will happen if you try to move the these in the editor??

https://docs.google.com/document/d/1Ur_GWU8tczAOJW280hlNDACN4J22ufarHvgUAxvnTn8/edit?usp=sharing

Make your player keyboard controlled
Warning: Make sure you stop the Editor, and your build before moving on to this step! Otherwise
you’ll lose your changes and have to do it all over again!

Moving the objects in the editor is alright for testing… but let’s make it so we can control
each object with the keyboard. First, we need to update our ‘player_avatar’ prefab.

(!) unhide the player_avatar object

(!) Add a rigid body to the player_avatar object

(!) on the rigidbody,in Constraints, Check Freeze Rotation for X,Y & Z

Freeze rotation for x,y, and z

(!) Add a KeyboardMover script to the prefab.

This is a very simple premade script I’m providing.

(!) Hit ‘Apply’ at the top of the inspector apply these changes to the player_avatar
prefab

(!) hide the player_avatar object again

Try it out, and you can see that it kind of works, but that both players move when you hit the
keys.

What’s wrong?????
Both our local player, and the remote player have Keyboard.cs attached. My keyboard
movements are applied to both my own player object, and the remote player object. On the
remote player object shouldn’t be affected by my keystrokes, and these competing with the
remote player’s “true” position in the build.

Turn off KeyboardMover.cs for any player we don’t own

(!) Add a new script “PlayerState” to the player_avatar prefab.

You can add a new script by using the Add Component Button, typing the name you want to
use (PlayerState in our case), and then hitting “New Script”, then hitting ‘Create and Add’

https://drive.google.com/open?id=18SXBuUoHrY0ppVV4_eHIokspOOmkk7wDi3J4ciXFFGc

(!) Hit ‘Apply’ at the top of the inspector apply these changes to the player_avatar prefab

<Come up with a better name than PlayerState? NetworkedPlayer??>

(!) Open PlayerState, and change its Start() function to the below:

void Start ()

{

if (!this.GetComponent<PhotonView>().isMine)

{

this.GetComponent<KeyboardMover>().enabled = false;

this.GetComponent<Rigidbody>().isKinematic = true;

}

}

The line: this.GetComponent<PhotonView>().isMine is true if we own this object, and our
changes will propagate over the network. If it’s false it’s owned by another player on another
computer. We only want to control move our own local object with keyboard, so we should turn
off the KeyboardMover for any player object that isn’t ours. Similarly, we should also disable the
rigid body (done by setting isKinematic=true). Remember, the owner of an object is the
authority on its state (in this case its position/orientation). Simulating physics on an object
changes its position/orientation! If we run physics on an object we don’t own, our local physics
system will set a position for the object in competition with the “true” position sent from the
remote player.

Making a Weapon
Let’s make a “sword” our players can swing by hitting space.

https://docs.google.com/document/d/1RszvOj0a79q50XEajcq7RDqY7-_HaFQXWibRE0dpUjs/edit?usp=sharing

(!) Make a cube and stretch into a long stick/dagger/club shape.
I recommend a scale of (0.1, 0.1, 2)

(!) Check “isTrigger” on the stick’s collider

(!) Make an empty game object, and line it up with one end of your stick (a little bit past
is good)

(!) Rename the empty game object “sword”

The cube-stick be lined up with the blue z-handle of the empty object.

(!) Child the stick to this empty “sword” object

(A good position for the stick (0,0,1) if you also used my recommended scale)

(!) Unhide player_avatar and child your sword to player_avatar

(!) Select the “sword” in the hierarchy

(!) Zero out the “sword” object’s position, in the inspector and optionally move it just to
the right of the player.

Sword at (0,0,0) position

Pull the red move handle, so the sword is at the player’s side

(!) Add a new Script to your sword object, calling the script ‘Sword’

(!) Add the following function to ‘Sword’ script (it can be called to swing the sword)

public void swingSword()

{

//make the sword appear

this.gameObject.SetActive(true);

//This function, varyWithT() performs a 1-time animation specified in code

//It takes 2 arguments:

//1st: an animation function

//2nd: the duration of the animation

https://docs.google.com/document/d/1gGKA-3rrVRsFbIJflh9GZQJcQEpgQcSqn4n8Na1BZTM/edit
https://docs.google.com/document/d/1gGKA-3rrVRsFbIJflh9GZQJcQEpgQcSqn4n8Na1BZTM/edit

this.varyWithT(

//Animation function, called over repeatedly the ‘animation duration’

(float t) =>

{

//t is is the 'normalized animation time'

// t = '0' at beginning of animation

// t = '.5' halfway through

// t = '1' at end of animation

//Move the Sword from pointing up, rotation = (-90,0,0) …
// … to pointing forward, rotation = (0,0,0)

this.transform.localEulerAngles =

Vector3.Lerp(new Vector3(-90, 0, 0), new Vector3(0, 0, 0), t);

//at the end of the animation, make the sword disappear

if (t == 1)

{

this.gameObject.SetActive(false);

}

},

//Animation duration

.2f

);

}

(!) Select player_avatar and apply the changes to the prefab.

(!) Disable player_avatar in the hierarchy again.

Actually swing the sword by calling this function

(!) In PlayerState, add the following function

https://drive.google.com/open?id=18SXBuUoHrY0ppVV4_eHIokspOOmkk7wDi3J4ciXFFGc

void swingWeapon()

{

this.GetComponentInChildren<Sword>(true).swingSword();

//the ‘true’ above has GetComponentInChildren also check in inactive children

//which our sword often is!

}

(!) Also, in PlayerState, replace the empty Update() with the following:

void Update()

{

if (Input.GetKeyDown(KeyCode.Space))

{

swingWeapon();

}

}

Test it out: can you swing your sword?
If you try it out now, when you hit space, your player’s sword is working OK, but you can’t see
the other players swinging their swords! The function swingWeapon() is only being called
locally, on our single instance of the game. We want it to be called on everyone’s else game
too!

<Fixing the first problem… similar to disabling the keyboard for remote players… need to ignore
keyinput, except for a player we own>
/*&& this.GetComponent<PhotonView>().isMine*/

RPC (Remote Procedure Call)
To call a function over the network, we use something called a Remote Procedure Call (RPC)
https://doc.photonengine.com/en-us/pun/current/manuals-and-demos/rpcsandraiseevent

First, we must designate the function as an RPC

https://drive.google.com/open?id=18SXBuUoHrY0ppVV4_eHIokspOOmkk7wDi3J4ciXFFGc
https://doc.photonengine.com/en-us/pun/current/manuals-and-demos/rpcsandraiseevent

(!) In PlayerState add the line [PunRPC] just above swingWeapon(), like so:

[PunRPC] //marks a function so that it can called over the network

void swingWeapon()

{

this.GetComponentInChildren<Sword>(true).swingSword();

}

Next, we use the method RPC() of our object’s PhotonView component to call that object:

(!) replace the swingWeapon() line in Update to match the following:

...

if (Input.GetKeyDown(KeyCode.Space))

{

this.GetComponent<PhotonView>().RPC("swingWeapon", PhotonTargets.All);

}

...

Try it out, and you should see the other player swinging their sword.

Breaking PRPC line down...
this.GetComponent<PhotonView>().RPC("swingWeapon", PhotonTargets.All);

PhotonView.RPC takes 2 arguments, first, name of the function you want to call, and 2nd, the
target players, on the network you want receive the function. Here, we’re calling it on every
connected player, including ourselves. It’s also possible to call a function on a specific
connected player, or subset of players, but we won’t get into any of those cases today <still
true?>

More info about PhotonTargets:
https://doc-api.photonengine.com/en/pun/current/group__public_api.html#gab84b274b6aa3b3a
3d7810361da16170f

<Think about it…. Why don’t we also sync the swords transformation info, like we did for the
player?>

https://docs.google.com/document/d/1RszvOj0a79q50XEajcq7RDqY7-_HaFQXWibRE0dpUjs/edit
https://doc-api.photonengine.com/en/pun/current/group__public_api.html#gab84b274b6aa3b3a3d7810361da16170f
https://doc-api.photonengine.com/en/pun/current/group__public_api.html#gab84b274b6aa3b3a3d7810361da16170f

Hitting Things
Let’s make it so things respond to being hit with sword.

First, let’s just print to the console when our sword hits something.

(!) Open Sword script, and add the following

public void OnTriggerEnter(Collider other)

{

Debug.Log("Sword hit " + other.name, other.gameObject);

}

(!) Run the game, (just the editor is fine), and check the console as you hit space to
swing the sword to see what your sword is hitting

We might be hitting our own player! The google doc Sword will be updated accordingly to fix
this if necessary.

(!) We should also add rigidBody to the sword, and check is kinematic, so our sword will
recognize objects without rigidbodies.
(FYI, at least one object in trigger collision needs a rigid body)

Select the sword, add rigid body, check ‘Is Kinematic’

https://drive.google.com/open?id=1LoFKJ_toyhGd2KwFvIYIB2V3LercMqxlyserfJ77QhY
https://drive.google.com/open?id=1LoFKJ_toyhGd2KwFvIYIB2V3LercMqxlyserfJ77QhY

Making ‘Hittable’ things
What we really want, is for the sword to act on a wide range of “hittable” objects, which will
respond to being hit in their own way. Enter, the interface.

(!) Make a new script, Hittable

(!) Open, delete everything and paste in below

using System.Collections;

using System.Collections.Generic;

using UnityEngine;

public interface Hittable

{

void takeHit(int damage);

}

This script won’t be attached to anything directly. Any other script can implement this interface
by including a public function called takeHit(int damage) and be recognized as a Hittable
typed object.

Read more about interfaces here
http://csharp-station.com/Tutorial/CSharp/Lesson13

(!) Add the below to Sword

https://docs.google.com/document/d/12xHMpJtovSmNbg3XUDxD0-OP6KjGrDBvLCSTSkKbAuU/edit
http://csharp-station.com/Tutorial/CSharp/Lesson13
https://docs.google.com/document/d/1gGKA-3rrVRsFbIJflh9GZQJcQEpgQcSqn4n8Na1BZTM/edit

public void OnTriggerEnter(Collider other)

{

Debug.Log("Sword hit " + other.name, other.gameObject);

Hittable otherThingHittableScript = other.GetComponent<Hittable>();

if (otherThingHittableScript != null)

{

otherThingHittableScript.takeHit(1);

}

}

In this new code, the sword checks if the the thing colliding implements our Hittable interface, in
which case we can call its takeHit() function.

Make a reusable destroyable/hittable behavior
Let’s make a script that make an object disappear if hit by a sword, a specified number of times.
First we’ll use it on a killable monster/destroyable wall.

(!) Make a cube

(!) Name it monster

(!) Add a RigidBody component

(!) Make and attach new Script, HittableAndDie

(!) Alter the following “, Hittable” after “MonoBehavior” in HittableAndDie

using System;

using System.Collections;

using System.Collections.Generic;

using UnityEngine;

public class HittableAndDie : MonoBehaviour, Hittable

{

...

This designates HittableAndDie as implementing ‘Hittable’. But we’re getting a compiler error!

(!) Add the function takeHit(int Damage) to HittableAndDie to finish implementing the
‘Hittable’ interface.

public void takeHit(int damage)

{

print("ouch! " + this.name + " took " + damage + " damage");

}

(!) Run the game, (just in the editor is fine), a check that hitting the monster generates
an ‘ouch’ message in the console.

https://drive.google.com/open?id=1zX7ZGpCmZuSsz2ZqTk-kDoYOuCirlEdoLQAHFQxcXeQ
https://drive.google.com/open?id=1zX7ZGpCmZuSsz2ZqTk-kDoYOuCirlEdoLQAHFQxcXeQ
https://drive.google.com/open?id=1zX7ZGpCmZuSsz2ZqTk-kDoYOuCirlEdoLQAHFQxcXeQ
https://drive.google.com/open?id=1zX7ZGpCmZuSsz2ZqTk-kDoYOuCirlEdoLQAHFQxcXeQ

(!) Let’s add some more code, and make use of PhotonNetwork.Destroy(), to make the
object disappear if hit 3 times. Complete code will be in the google doc version of
HittableAndDie

using System;

using System.Collections;

using System.Collections.Generic;

using UnityEngine;

public class HittableAndDie : MonoBehaviour, Hittable

{

public int hp = 3;

public void takeHit(int damage)

{

this.GetComponent<PhotonView>().RPC("takeDamage", PhotonTargets.All, damage);

}

[PunRPC]

public void takeDamage(int damage)

{

Debug.Log(this.name + " took " + damage, this.gameObject);

//only on the owner's instance actually modify hp,

//and destroy the object if no HP left.

if (this.GetComponent<PhotonView>().isMine)

{

hp -= damage;

if (hp <= 0)

{

PhotonNetwork.Destroy(this.gameObject);

}

}

}

}

(!) You’ll have to add a PhotonView component as well to so the RPC will work

https://drive.google.com/open?id=1zX7ZGpCmZuSsz2ZqTk-kDoYOuCirlEdoLQAHFQxcXeQ

<Hold on!!! Is this really the right way??? What if I hit the monster a bunch… and another player
signs in after???>

(Optional) Make the monster wander around

(!) Add RandomNPCMover script

(!) Add a PhotonTransformView component,

(!) Drag the PhotonTransformView onto Observed Component slot of the PhotonView
Component

(!) Check ‘Synchronize Position’ &‘Synchronize Rotation’ on the PhotonTransformView

(Optional) Make a hittable door.
Add this script, HittableDoor to an object and it will lift up when hit with a sword.
You’ll need to add Photon view, and a PhotonTransformView.

Items, Syncing variables over the network.
Let’s make a collectible item, that gives the player a temporary magical barrier.

Make the collectible shield item

https://drive.google.com/open?id=1SCORlvDYQ4ITZ-0xSwfHPZlIMibXJZzkTG_fh3bd5h0
https://drive.google.com/open?id=1-JUgFqvIXAa6zE5IlfiQGiH_8iwfMPP9paXSoLMfpEA

(!) Create a sphere (this will be the item)

(!) Check ‘isTrigger’ on its collider

(!) name it “shield_item”

(!) Add a PhotonView

(!) size, and apply a material to make it look however you want.

Adding a shield to the player

(!) create a capsule, and apply a translucent material to it. (this will be the magic shield)

(!) Name the capsule ‘shield’

(!) remove the collider from the capsule

(!) Child this object to your player prefab, and zero out its position

Making the shield turn on, upon collecting the item
<This section could be refactored a bit… probably… do something more object-y? Check for a
a shield object, and have that take the hit ?>

(!) Add a new script PlayerShield to the player_avatar prefab

https://drive.google.com/open?id=1I2jHVXGsTIeO6AizKagWpXDYr-2c6Af3KZCeaNtt7SE

using System;

using System.Collections;

using System.Collections.Generic;

using UnityEngine;

public class PlayerShield : MonoBehaviour {

public GameObject shieldObject;

bool shieldIsOn = false;

void Update ()

{

shieldObject.SetActive(shieldIsOn);

}

private void OnTriggerEnter(Collider other)

{

if (other.name == "shield_item" && this.GetComponent<PhotonView>().isMine)

{

//Turn on the shield!

shieldIsOn = true;

//Collect the item

PhotonNetwork.Destroy(other.gameObject);

}

}

}

<!!! There’s actually… something strange that can go wrong here, (race condition), you can read
about it here: <where?> >

(!) In inspector, drag the ‘shield’ capsule object onto the ‘shieldObject’ slot on the ‘Player
Shield’ script.

(!) If you make a build and test now, you’ll see shield appear locally, but it won’t appear
for other players on the network.

(!) Hit apply on ‘player_avatar’, then hide again

Syncing ‘shieldIsOn’ variable across the network
Similar to making function calls over the internet, it’s also possible to sync variables over the
network. It’s a little more complicated than an RPC. A script has to have a special function
called OnPhotonSerializeView, which sends and receives variables over the network. This
script must be attached to an object with a PhotonView, and the script must finally added to the
PhotonView’s observed component area (just like the PhotonTransformView we use for the
player).

(!) Add the following function to PlayerShield

https://drive.google.com/open?id=1I2jHVXGsTIeO6AizKagWpXDYr-2c6Af3KZCeaNtt7SE

public void OnPhotonSerializeView(PhotonStream stream, PhotonMessageInfo info)

{

if (stream.isWriting)

{

// We own this player: send the others the variable

stream.SendNext(this.shieldIsOn);

}

else

{

// we don’t own this player, receive the new value for the variable

this.shieldIsOn = (bool) stream.ReceiveNext();

}

}

All OnPhotonSerializeView functions will be of this form: In the ‘stream.isWritingBranch’
‘stream.SendNext()’ call with each variable we want to receive, and in the ‘else’ branch, reading
those values out in the same order. The ‘(bool)’ part is called a cast. stream.ReceiveNext()

returns the variables as a generic ‘object’, and this cast is used to convert it back to its proper
specifc type (this case, a bool).

More info on OnPhotonSerializeView()
https://doc.photonengine.com/en-us/pun/current/getting-started/feature-overview#_observembp
un

(!) CRITICAL Add the PlayerShield component onto the Observed Components slot on
the Photon View.

(!) Apply the changes to the player_avatar prefab, then hide it

The End (~ish)
This is all I have time to write down, but there are several natural extensions/continuations that I
can show you or help you try on your own.

● Try Creating multiple kinds of sword swings

https://doc.photonengine.com/en-us/pun/current/getting-started/feature-overview#_observembpun
https://doc.photonengine.com/en-us/pun/current/getting-started/feature-overview#_observembpun

● Try making a projectile weapon, that calls also uses Hittable and Take hit
● Make the enemies attack players if Nearby
● Make other kinds of items
● Display HP over the network
● Make the HittableOnDie ignore a hit if there’s a PlayerShield active.

Bonus: Here’s a link to a fancier version of this project

https://drive.google.com/open?id=0BzsEOivZ9PwdMjVEbVc2UGZCSDA

