
Net Positive
Building Networked Games with Unity & Photon

What we’ll be doing
We’re going to make a ultra-simple MMO (modestly multiplayer online) dungeon crawler. Where
they can run around with their friends, attacking, enemies, each other.

We will start from empty and incomplete scripts, and incrementally build up functionality. It’s OK
if you are new to coding in Unity. There will be links to live google docs for each relevant script
in the project for you to paste into your project. (links to these can be found here)

This document is contains a mix of instructions, and explanations. Steps for you to perform start
with a (!), and are highlighted in purple.

The existing Photon documentation is quite good, and my tutorial is loosely based on their basic tutorial:
https://doc.photonengine.com/en/pun/current/tutorials/pun-basics-tutorial/intro

Overview

How to run and test networked games in Unity

Connecting to the Photon server

Networked Objects (PhotonViews), and ownership

Remote Procedure Calls (RPCS)

Syncing Variables over the network

First Steps
(!) make sure you have Unity 2017 installed

https://docs.google.com/document/d/14icacAb_SUN6Oik88YaZi65Jmgap5u0EiMj0aPxMfU0/edit#
https://doc.photonengine.com/en/pun/current/tutorials/pun-basics-tutorial/intro

(!) download the template project

(!) unzip and open with Unity

Setting Up the Project
There will be some errors, it’s just because you need to install Photon.

(!) Download and import ‘Photon Unity Networking’ from the Asset Store.

It’s this free one

Hit this button if it appears

https://drive.google.com/open?id=1EUm2B4NVW9bNWCHz2jWtageEhKandq-h

Create Photon Account

(!) Register for a Photon account at
https://www.photonengine.com/en/Account/SignIn

Link Project with your Photon Account

(!) Sign in to your photon account
https://www.photonengine.com/en-US/Photon

It should automatically take you to your dashboard

(!) Copy your ‘App ID’ from the dashboard...

Here’s the Dashboard, with the App ID circled

https://www.photonengine.com/en/Account/SignIn
https://www.photonengine.com/en-US/Photon

(!) Go toWindow->Photon Unity Networking->PUN Wizard

(!) Hit the ‘Setup Project’ button

(!) Paste in your app-ID

(!) Hit ‘Setup Project’

(!) Go toWindow->Photon Unity Networking->Highlight Server Settings

(!) IMPORTANT! In the Inspector, set ‘Protocol’ to ‘Tcp’

It won’t work if you miss this step!

(!) Also change Region to ‘Usw’.

Go through a Photon server on the west coast instead of Europe

Running Networked Games
We’re building a multiplayer game, so we need to run multiple copies of our game. Typically,
we’ll run one instance of the game in the editor for 1 player, while simultaneously running a
project build (Exe etc..) for each additional player. Let’s give it a try, using Photon’s builtin
demos.

(!) Go toWindow->Photon Unity Networking->Configure Demos (build setup)

Now we’re ready to try Photon’s built in demos, and start developing for ourselves

(!) Go to ‘File->Build Settings…’

(it should look like this, with a bunch of scenes added)

(!) Build a Mac, or PC version Giving it the name “test”

I’m working on Mac here, so I’m making a Mac build.

It’s also a good idea to put the EXE in your taskbar (Windows), or on the dock (Mac). That way
you can quickly start a second copy of the game.

Here’s the build on the OSX dock, and the Windows taskbar respectively

Important note for Mac Users:
If you want to run multiple copies of your built game (to test more than 2 players), you need to
go into the build’s package contents below and use a different file:

Once your build is finished

2-finger click on the build and choose ‘Show Package Contents’

Make an Alias of the file with the Black Icon in Contents/MacOS, or put it on the right side of your dock:

(!) Once it’s finished building, run the built game.

(!) In the resolution dialog, check “windowed”, and choose a small resolution. (like,
640x480)

DON’T run the game full screen, or at a high resolution. We must run one copy of the game for
each player to test the networking (one copy of the game can be the editor), and we really need
to be able to see all the players’ game screens.

E.g. Below, we’re running 3 copies of the demo, and 1 copy in the editor

(!) Once the build is running, also run the scene in the editor.

(!) Start, the ‘Demo Boxes’ in both the build, and the editor

Choose demo Boxes, then Load Demo in both the build, and the editor

You should be able to click and see boxes appear in both windows

Making a new game, from scratch
We will be making a super simple action game. Up to 20 players will automatically connect to
single networked level. move a character around, be able to swing a sword, to kill an enemy
(and optionally other players), and collect different wearable masks.

(!) Create a new scene

(!) Create an empty gameobject, and name it ConnectionManager

>>
(!) Add a ConnectionManagerIncomplete script to the ConnectionManager object

...

...

https://docs.google.com/document/d/1Ur_GWU8tczAOJW280hlNDACN4J22ufarHvgUAxvnTn8/edit

...

(!) Run the game in the editor

I gave you an incomplete script! we’ll fix it below.

Connecting to Photon
To participate in a photon game, first must do 2 connection steps. a new player must first
connect to the Photon MASTER SERVER.

1st, you must connect to the Photon Master Server

Once connected to the master server, a player must join a ROOM.
In our project, there will just be 1 room that all players join.

Can’t talk to dad unless we’re both in the same room (Both you and dad are not in a room yet!)

Once connect to the master server, if you want to actually communicate/play a game with other
players, you must enter a room

ROOMS are like individual matches of a game, and players can only send and receive
messages to other players in the same ROOM**. Player can freely create, join, and leave
rooms. Photon also provides functionality to restrict who can enter a room, and when they can
enter, or to find a random available room to join. (Think, random matchmaking). In an MMO,
there might be individual rooms individual dungeons or towns.

NOTE: Photon’s own tutorial has more info about auto-joining a free room & matchmaking:
https://doc.photonengine.com/en/pun/current/tutorials/pun-basics-tutorial/intro

https://doc.photonengine.com/en/pun/current/tutorials/pun-basics-tutorial/intro

(!) CODE-ALONG : Update your script to match PhotonConnectionManagerIncomplete

Warning! If you’re skipping ahead, the above won’t be ready yet.
As a hint, you need to connect to the master server, then join/create a room

Here’s more information about callbacks like OnConnectedToMaster(), and OnJoinRoom()
https://doc-api.photonengine.com/en/pun/current/interface_i_pun_callbacks.html

(!) Once the above code-along is done, Run the scene, and verify that the game view shows
you are ‘Connected as Master Client’

You should see this,

Creating a networked object
To start we’ll create a networked capsules whose positions and rotation will be synced across
the network. We’ll eventually turn this object into a prefab for player’s avatar.

https://docs.google.com/document/d/1Ur_GWU8tczAOJW280hlNDACN4J22ufarHvgUAxvnTn8/edit
https://doc-api.photonengine.com/en/pun/current/interface_i_pun_callbacks.html

(!) Create a capsule, (it will eventually be the player’s avatar)

(!) Name it “player_avatar”

(!) Add a PhotonView component to “player_avatar”

You can use the ‘Add Component’ button in the inspector…
OR

...

Use the Menu ‘Component->Photon Networking->Photon View’

(!) Also add a PhotonTransformView component
You can use the same menu, or inspector button

(!) Check ‘Synchronize Position’ &‘Synchronize Rotation’ on the PhotonTransformView

(!) Drag the PhotonTransformView component onto the Observed Components slot
on the PhotonView.

Drag this…

On to this!

Should look like this once dragged

Moving a networked Object

(!) Save scene and call “Game”.

(!) Open File->Build Settings…

(!) Select and delete all the scenes in build

Select and delete these

(!) Click the ‘Add Open Scenes’ button to add “Game” scene to the build.

You should now just have 1 scene in the build

(!) Build your game. again
Don’t change the name or location in the file dialog! This way, you can just use your
taskbar/dock shortcut again.

Just replace the old build! It will save you time

(!) First Run the game in the EDITOR.

Build should say, connected as Master Client

(!) Second, run the build you just made.

Build should say, connected as Regular Client

(!)Try moving “player_avatar” in the scene view of the editor with the move tool.
You should see it move on the build window too when you do!

Try moving ‘player_avatar’ in the scene view

Now the other way around

(!) Try running the build first, THEN the editor. & try moving the player in the Editor this
way.

…….It won’t work!

Build should be master, editor should be regular

About the Photon View
A Photon View component designates a game object whose state needs be synchronized
over the network. Unfortunately, it doesn’t just magically sync everything about an object,
synced information must be contained in special scripts. PhotonTransformView is one such
script that does a good job syncing position/rotation/scale over the network. Later we will write
our own script to sync our own custom player state over the network.

Why could we sometimes move the object, and other times not?
Remember our pong discussion? In networked games, game objects, (like this player) have an
owner. I.E. which of the player owns, and is responsible for an object. The player that owns
the object is the authority on its various state (like, position, rotation, etc…) and all other players
are updating their local copy of the object to match the owner’s version of the object.

Objects in the scene, are as you would expect are given to the first player who joins the room.
This first player is called the master client. In our “broken” case, the build-game owns the
player-capsule, and the editor-game is constantly updating the capsules position to reflect the
build’s version (The Photon Transform View is the culprit!, helped out by the Photon View). Our
attempts to move this object that doesn’t belong to us is being quickly overwritten by this
background process that makes its position match the own. If you pay attention to the Photon
View component in both situations, you’ll see that a checkbox will appear “Controlled Locally”
signifying whether or not the editor is the owner of a particular object.

If the editor owns the object…

If the editor DOESN’T own the object…

What we really want, is create an avatar for each connected player, and have each player be
the owner of their avatar.

Creating our own ‘Player GameObject’

(!) Create a new Folder called ‘Resources’

As many of you may know already, the contents of folder named ‘Resources’ are available to
dynamic loading with ‘Resources.Load()’

(!) Make the player_avatar a prefab by dragging it from the hierarchy into the
Resources folder in the Project tab.

It MUST go in the ‘Resources’ folder

(!) Disable the player_avatar object in the hierarchy
We will be modifying this prefab, so it will be helpful to keep it around in the scene.

https://drive.google.com/open?id=1tQuU6eWoWvP8VVOKC1m3BxEJM7rHolLZqqstECoZHAY

(!)Code along : PhotonConnectionManagerIncomplete,

we’re going to add the following function

void OnJoinedRoom()

{

GameObject localPlayer = PhotonNetwork.Instantiate("player_avatar", Vector3.zero,

Quaternion.identity, 0);

localPlayer.name = "local avatar";

}

Explanation:
OnJoinedRoom() is automatically called when we join a room. Now when a player first
joins a room, they’ll instantiate their own avatar object. When a player creates an object
with PhotonNetwork.Instantiate, that player owns the object.

(!) Build your game again

(!) Run the build, and the Editor..

you’ll see two new objects in the hierarchy, and you’ll be able to correctly move the one
labeled “local avatar (Clone)”.

Experiment:What will happen if you try to move the these in the editor??

https://docs.google.com/document/d/1Ur_GWU8tczAOJW280hlNDACN4J22ufarHvgUAxvnTn8/edit?usp=sharing

Quickly Add a floor
Our character will be affected by gravity, so we’ll need some kind of ground.

(!) Create a big cube for the floor, put on a checkerboard. Call it “floor”.

I Recommend you make its scale (100,1,100) and its position it at (0,-2,0)

I also recommend you put a texture on it

Make your player keyboard controlled
Warning: Make sure you stop the Editor, and your build before moving on to this step! Otherwise
you’ll lose your changes and have to do it all over again!

Moving the objects in the editor is alright for testing… but let’s make it so we can control
each object with the keyboard. First, we need to update our ‘player_avatar’ prefab.

(!) unhide the player_avatar object

(!) Add a rigid body to the player_avatar object

(!) on the rigidbody,in Constraints, Check Freeze Rotation for X,Y & Z

Freeze rotation for x,y, and z

(!) Add a PlayerKeyboardController script to the ‘player_avatar’ prefab.

This is a very simple premade script I’m providing.

(!) Hit ‘Apply’ at the top of the inspector apply these changes to the player_avatar
prefab

(!) hide the player_avatar object again

Try it out, and you can see that it kind of works, but that both players move when you hit the
keys.

What’s wrong?????
Both our local player, and the remote player have Keyboard.cs attached. My keyboard
movements are applied to both my own player object, and the remote player object. On the
remote player object shouldn’t be affected by my keystrokes, and these competing with the
remote player’s “true” position in the build.

Turn off PlayerKeyboardController.cs for any player we don’t own

(!) Code along : open PlayerKeyboardController, and change its Start() function to the
below:

void Start ()

{

if (!this.GetComponent<PhotonView>().isMine)

{

this.GetComponent<Rigidbody>().isKinematic = true;

this.enabled = false;

}

}

After you save, and play again, the player should move separately.

The line: this.GetComponent<PhotonView>().isMine is true if we own this object, and changes
we make (e.g. position) will be sent to other participants in the game. If it’s false it’s owned by a
player on another computer, and we can only listen for their changes. We only want to move
our own local object with keyboard, so we should disable the PlayerKeyboardController for any
player object that isn’t ours. Similarly, we should also disable the rigid body (done by setting
isKinematic=true). Remember, the owner of an object is the authority on its state (in this case
its position/orientation). Simulating physics on an object changes its position/orientation! If we
run physics on an object we don’t own, our local physics system will set a position for the object
in competition with the “true” position sent from the remote player.

Making a Weapon
Let’s make a “sword” our players can swing by hitting space.

(!) Make a cube and stretch into a tall, thin stick.
I recommend a scale of (0.1, 2, .1)

(!) Check “isTrigger” on the stick’s collider

(!) Make an empty game object, and line it up with the bottom of your stick (a little bit
past is good)

(!) Rename the empty game object “sword”

The empty ‘sword’ object should be just below the stick (lined up with the green y-handle)

(!) Child the stick to this empty “sword” object

(A good position for the stick once it’s a child of ‘sword’ (0,1,0) if you also used my
recommended scale)

(!) Unhide player_avatar and child your sword to player_avatar

(!) Select the “sword” in the hierarchy

(!) Zero out the “sword” object’s position, in the inspector and optionally move it just to
the right of the player.

Sword at (0,0,0) position

Pull the red move handle, so the sword is at the player’s side

(!) Add a new Script to your sword object, calling the script ‘Sword’

(!) code along : Add the following function to ‘Sword’ script (it can be called to swing the
sword)

public void swingSword()

{

//make the sword appear

this.gameObject.SetActive(true);

//This function, varyWithT() performs a 1-time animation specified in code

//It takes 2 arguments:

//1st: an animation function

//2nd: the duration of the animation

https://docs.google.com/document/d/1gGKA-3rrVRsFbIJflh9GZQJcQEpgQcSqn4n8Na1BZTM/edit
https://docs.google.com/document/d/1gGKA-3rrVRsFbIJflh9GZQJcQEpgQcSqn4n8Na1BZTM/edit

this.varyWithT(

//Animation function, called over repeatedly the ‘animation duration’

(float t) =>

{

//t is is the 'normalized animation time'

// t = '0' at beginning of animation

// t = '.5' halfway through

// t = '1' at end of animation

//Move the Sword from pointing up, rotation = (-90,0,0) …
// … to pointing forward, rotation = (0,0,0)

this.transform.localEulerAngles =

Vector3.Lerp(new Vector3(0, 0, 0), new Vector3(90, 0, 0), t);

//at the end of the animation, make the sword disappear

if (t == 1)

{

this.gameObject.SetActive(false);

}

},

//Animation duration

.2f

);

}

(!) Select player_avatar and apply the changes to the prefab.

(!) Disable player_avatar in the hierarchy again.

Actually swing the sword by calling this function

(!) Create a new Script called CharacterSheet, and add it to player_avatar

(!) In CharacterSheet, add the following function

void useWeapon()

{

this.GetComponentInChildren<Sword>(true).swingSword();

//the ‘true’ above has GetComponentInChildren also check in inactive children

//which our sword often is!

}

(!) Also, in PlayerKeyboardController, change Update() to match the following:

void Update()

{

moveCharacterViaKeyboard();

if (Input.GetKeyDown(KeyCode.Space))

{

this.GetComponent<CharacterSheet>().useWeapon();

}

}

Test it out: can you swing your sword?
If you try it out now, when you hit space, your player’s sword is working OK, but you can’t see
the other players swinging their swords! The function useWeapon() is only being called locally,
on our single instance of the game. We want it to be called on everyone’s else game too

RPC (Remote Procedure Call)
To call a function over the network, we use something called a Remote Procedure Call (RPC)
https://doc.photonengine.com/en-us/pun/current/manuals-and-demos/rpcsandraiseevent

https://doc.photonengine.com/en-us/pun/current/manuals-and-demos/rpcsandraiseevent

First, we must designate the function as an RPC

(!) In CharacterSheet add the line [PunRPC] just above swingWeapon(), like so:

[PunRPC] //marks a function so that it can called over the network

void useWeapon()

{

this.GetComponentInChildren<Sword>(true).swingSword();

}

Next, we use the method RPC() of our object’s PhotonView component to call that object:

(!) Back in PlayerKeyboardController replace the useWeapon() line in Update to
match the following:

...

if (Input.GetKeyDown(KeyCode.Space))

{

this.GetComponent<PhotonView>().RPC("useWeapon", PhotonTargets.All);

}

...

Try it out, and you should see the other player swinging their sword.

Breaking RPC line down...
this.GetComponent<PhotonView>().RPC("useWeapon", PhotonTargets.All);

PhotonView.RPC takes 2 arguments, first, name of the function you want to call, and 2nd, the
target players, on the network you want receive the function. Here, we’re calling it on every
connected player, including ourselves. It’s also possible to call a function on a specific
connected player, or subset of players, but we won’t get into any of those cases today

More info about PhotonTargets:
https://doc-api.photonengine.com/en/pun/current/group__public_api.html#gab84b274b6aa3b3a
3d7810361da16170f

https://doc-api.photonengine.com/en/pun/current/group__public_api.html#gab84b274b6aa3b3a3d7810361da16170f
https://doc-api.photonengine.com/en/pun/current/group__public_api.html#gab84b274b6aa3b3a3d7810361da16170f

An Aside: Why don’t we also sync the swords transformation info, like we did for the player?

Interfaces (making things respond to sword hits)
Let’s make it so things respond to being hit with sword.

First, let’s just print to the console when our sword hits something.

(!) Open Sword script, and add the following

public void OnTriggerEnter(Collider other)

{

Debug.Log("Sword hit " + other.name, other.gameObject);

}

(!) We should also add rigidBody to the sword, and check is kinematic, so our sword will
recognize objects without rigidbodies.
(FYI, at least one object in trigger collision needs a rigid body)

Select the sword, add rigid body, check ‘Is Kinematic’

(!) Add a sphere or cube to your game, and tun, (just the editor is fine), checking the
console as you hit space to swing the sword to see what your sword is hitting

We might be hitting our own player! The google doc Sword will be updated accordingly to fix
this if necessary.

https://drive.google.com/open?id=1LoFKJ_toyhGd2KwFvIYIB2V3LercMqxlyserfJ77QhY
https://drive.google.com/open?id=1LoFKJ_toyhGd2KwFvIYIB2V3LercMqxlyserfJ77QhY

You should see something like this

Making ‘Hittable’ things
What we really want, is for the sword to act on a wide range of “hittable” objects, which will
respond to being hit in their own way. Enter, the interface.

(!) Make a new script, IHittable

(!) Open, delete everything and paste in below

using System.Collections;

using System.Collections.Generic;

using UnityEngine;

public interface IHittable

{

void takeHitLocally(int damage);

}

This script is called an interface, and won’t be attached to anything directly. Instead, it defines a
new type of object, which always has the function, takeHitLocally(int damage). Thus, in
sword, we can check for any objects of type IHittable.

(!) Add the below to Sword

https://docs.google.com/document/d/12xHMpJtovSmNbg3XUDxD0-OP6KjGrDBvLCSTSkKbAuU/edit
https://docs.google.com/document/d/1gGKA-3rrVRsFbIJflh9GZQJcQEpgQcSqn4n8Na1BZTM/edit

public void OnTriggerEnter(Collider other)

{

Debug.Log("Sword hit " + other.name, other.gameObject);

IHittable otherThingHittableScript = other.GetComponent<IHittable>();

if (otherThingHittableScript != null)

{

otherThingHittableScript.takeHitLocally(1);

}

}

In this new code, the sword checks if the the thing colliding implements contains any IHittable
scripts, in which case we can call its takeHitLocally() function.

Implementing Hittable, to give things HP
There are no IHittables at the moment, but fortunately, any script can become an IHittable by
doing 2 things. 1: Declaring itself as implementing IHittable, and 2: including public versions of
all the functions in the interface.

Let’s make a hittable script to make an object disappear if hit by a sword, a specified number of
times. First we’ll use it on a killable monster/destroyable wall.

(!) Make a cube

(!) Name it monster

(!) Add a RigidBody component

(!) Make and attach new Script, HittableAndDisappear

(!) Alter the following “, IHittable” after “MonoBehavior” in HittableAndDisappear

using System;

using System.Collections;

using System.Collections.Generic;

using UnityEngine;

public class HittableAndDisappear: MonoBehaviour, IHittable

{

...

This designates HittableAndDisappear as implementing ‘IHittable’. But we’re getting a
compiler error!

(!) Add the function takeHitLocally(int Damage) to HittableAndDisappear to finish
implementing the ‘IHittable’ interface.

https://drive.google.com/open?id=1zX7ZGpCmZuSsz2ZqTk-kDoYOuCirlEdoLQAHFQxcXeQ

public void takeHitLocally(int damage)

{

print("ouch! " + this.name + " took " + damage + " damage");

//==== flash the object red ================================

//turn the object red...

this.GetComponent<Renderer>().material.color = Color.red;

//then turn it back white .25 seconds later

this.delayedFunction(

() => { this.GetComponent<Renderer>().material.color = Color.white; }

,

.25f);

//===

}

(!) Run the game, (just in the editor is fine), a check that hitting the monster generates
an ‘ouch’ message in the console.

(!) Add a public variable for hp.

public class HittableAndDisappear: MonoBehaviour, IHittable, IPunObservable

{

public int hp = 100; //how much sword damage object can take before

disappearing

...

(!) Update takeHitLocally to include subtract ‘damage’, and destroy the object

public void takeHitLocally(int damage)

{

print("ouch! " + this.name + " took " + damage + " damage");

//==== flash the object red ================================

//turn the object red...

this.GetComponent<Renderer>().material.color = Color.red;

//then turn it back white .25 seconds later

this.delayedFunction(

() => { this.GetComponent<Renderer>().material.color = Color.white; }

,

.25f);

//===

//--- apply the damage, and destroy the object if hp goes to 0 ----

this.hp -= damage;

if (hp <= 0)

{

Destroy(this.gameObject);

}

}

(!) add an OnGUI function to display the hp.

. . .

//paste before the last closing curly brace ‘}’ in the file

void OnGUI()

{

//Display the HP

AlexUtil.DrawTextAtWorldPosition(

this.transform.position,

"HP : " + this.hp,

24,

Color.magenta,

new Vector2(0,35)

);

}

(bonus) Making a HittableDoor
Add this script, HittableDoor to an object and it will lift up when hit with a sword.
You’ll need to add Photon view, and a PhotonTransformView.

HP, Out of Sync
If you run your game with 2 players, give the monster 100 hp, and hit it a bunch, you’ll probably
see the hp goes out of sync between the 2 games. What’s happening?

Also, when one side reaches zero, disappears, it only disappears there

61 in one game, 69 in the other??

https://drive.google.com/open?id=1-JUgFqvIXAa6zE5IlfiQGiH_8iwfMPP9paXSoLMfpEA

It disappeared on the master client side, but not on the regular client side!

Syncing Object Destruction
We can fix the inconsistent disappearance by using PhotonNetwork.Destroy() instead of just
Destroy()

(!) Change Destroy(...) to PhotonNetwork.Destroy(...) in HittableAndDisappear

...

this.hp -= damage;

if (hp <= 0)

{

//Destroy the object…
//If you want to Destroy a networked object

//You need to use PhotonNetwork.Destroy, otherwise

//the object will only be destroyed locally

PhotonNetwork.Destroy(this.gameObject);

}

If you try to run now, you’ll get an error when Monster’s HP goes to zero.
PhotonNetwork.Destroy requires a PhotonView component!

Will fail to destroy is monster has no PhotonView component

(!) Add a PhotonView component to Monster

Apply Damage over the Network with an RPC
Maybe, if we applied our damage across the network, that’d fix things.

(!) Add to HittableAndDisappear, a new function applyDamage(), we’ll call as an RPC

...

public void takeHitLocally(int damage)

{

this.GetComponent<PhotonView>().RPC("applyDamage", PhotonTargets.All, damage);

}

[PunRPC]

public void applyDamage(int damage)

{

hp -= damage;

if (hp <= 0)

{

PhotonNetwork.Destroy(this.gameObject);
}

}

...

Broken, in a new way
If we try now… the enemy is taking damage twice! What’s going on?

Player1’s sword exists in 2 places…

When player1 swings the sword, OnTriggerEnter is being checked both locally, and remotely

Thus… both the local sword sends out an applyDamage RPC to everyone on the netwrok.
meanwhile, the remote sword is also getting and OnTriggerEnter(), and sending applyDamage()
as an RPC to everyone as well. If we added a 3rd player, it would actually get sent a 3rd time!

Moreover, the conditions of useWeapon’s animation (gets triggered at slightly different times
because of latency), Framerates might also be different across different games, and so the
conditions leading up to OnTriggerEnter are not going to be exactly the same for each or our
games, so some hits might get lost, or doubled, and our HP’s can go out sync.

An Aside: Potentially, this isn’t that big of a deal! Small differences like this, (the HP of an
enemy being slightly different for each player). Sometimes, it’s worth living with little
inconsistencies like this, since it can save you bandwidth.

Check for OnTriggerEnter only locally
We named the function takeHitLocally() for a reason. It makes sense for only the local
version of a sword to check if hits something, and then for the applyDamage() RPC to
propagate from just the player who swung the sword.

(!) update OnTriggerEnter in Sword to the following

...

public void OnTriggerEnter(Collider other)

{

bool isLocalSword = this.GetComponentInParent<PhotonView>().isMine;

if (isLocalSword && other.GetComponent<IHittable>() != null)

{

other.GetComponent<IHittable>().takeHitLocally();

}

}

...

Now, our local sword swings are purely decorative on the remote side, and we decide if we
should apply damage in just one place, and HP won’t drift.

Still out of sync in another case though…
If you start a game by yourself, and deal some damage, and then another player joins…

The new player sees an enemy with full HP!

Regular client showed up late, and doesn’t have the correct HP

Syncing HP (and other vars) over the network
What we really want, is for there to be just one, true value of our monsters HP, and this one true
value is applied all across the network.

This is actually what was happening with PhotonTransformView from the beginning. The owner
of the object, the master client had the one true position, and all the other clients receive the
true value from the owner. We can do this with other variables too!

(!) Update the top of HittableAndDisappear

using System.Collections;

using System.Collections.Generic;

using UnityEngine;

public class HittableAndDisappear : MonoBehaviour, IHittable, IPunObservable {

...

We’re actually implementing the interface IPunObservable, so will get an error until we add the
function required by IPunObservable.

(!) Also to HittableAndDisappear, add the required function, OnPhotonSerializeView(...)

public void OnPhotonSerializeView(PhotonStream stream, PhotonMessageInfo info)

{

if (stream.isWriting)

{

// We own the object, and this variable, thus send it to the other

players

stream.SendNext(hp);

}

else

{

// we do *not* own this variable, and here we receive it’s value

//from the owner

hp = (int) stream.ReceiveNext();

}

}

All OnPhotonSerializeView functions will be of this form: In the ‘stream.isWritingBranch’
‘stream.SendNext()’ call with each variable we want to receive, and in the ‘else’ branch, reading
those values out in the same order. The ‘(bool)’ part is called a cast. stream.ReceiveNext()

returns the variables as a generic ‘object’, and this cast is used to convert it back to its proper
specifc type (this case, an int).

More info on OnPhotonSerializeView()
https://doc.photonengine.com/en-us/pun/current/getting-started/feature-overview#_observembp
un

(!) In the Inspector, Drag and drop Monster’s HittableAndDisapear component onto
the empty Observed Component slot on the PhotonView

>>>
like we did for the PhotonTransformView at the start, drag ono the ObservedComponent slot

https://doc.photonengine.com/en-us/pun/current/getting-started/feature-overview#_observembpun
https://doc.photonengine.com/en-us/pun/current/getting-started/feature-overview#_observembpun

It should look like this

Now if a player joins the game late, the enemies HP will still be right!

A small tweak.

(!) Update HittableAndDisappear to the below...

[PunRPC]

public void applyDamage()

{

//Play a little animation (grow in size) when hit

this.varyWithT((float t) => {

this.transform.localScale = (1 + .1f * Mathf.PingPong(2 * t, 1)) *

Vector3.one;

}, .1f);

//but actually only the owner to variable should be changing it!

if (this.GetComponent<PhotonView>().isMine)

{

hp--;

if (hp <= 0)

{

PhotonNetwork.Destroy(this.gameObject);

}

}

}

<make clearer>

(Optional) Make the monster wander around

(!) Add RandomNPCMover script

(!) Add a PhotonTransformView component,

(!) Drag the PhotonTransformView onto Observed Component slot of the PhotonView
Component

(!) Check ‘Synchronize Position’ &‘Synchronize Rotation’ on the PhotonTransformView

Putting it all together to make Items/Equipment
Let’s go back to the player, and create pieces of equipment you can collect around the dungeon.
Let’s start with some masks.

First, we’re going to cheat a little, and bake in all the possible items you can collect into the
player object.

(!) Select player_avatar, and unhide

(!) Create and empty child on it, and name it ‘masks’

https://drive.google.com/open?id=1SCORlvDYQ4ITZ-0xSwfHPZlIMibXJZzkTG_fh3bd5h0

(!) drag and drop a sprite from Assets/Textures/NohMasks onto your mask object, and
position them at the front of of the player avatar. Position and resize as you feel led.

(!) give the mask a name.

(!) hide the mask, and repeat the above steps for a couple more masks.

Position so that they face the positive z-axis (blue handle)
Only 1 mask will be enable at a time.

(!) select ‘player_avatar’, create and add a new script called EquipmentGroup

(!) Open EquipmentGroup and add in the below

using System.Collections;

using System.Collections.Generic;

using UnityEngine;

public class EquipmentGroup : MonoBehaviour, IPunObservable

{

public Transform allItemContainer;

public string currentlyEquippedItemName;

// Update is called once per frame

void Update () {

foreach(Transform item in this.allItemContainer)

{

if (item.name == currentlyEquippedItemName)

{

item.gameObject.SetActive(true);

}

else

{

item.gameObject.SetActive(false);

}

}

}

public bool hasItem(string itemName)

{

foreach (Transform item in this.allItemContainer)

{

if(item.name == itemName)

{

return true;

}

}

return false;

}

public void OnPhotonSerializeView(PhotonStream stream, PhotonMessageInfo info)

{

if (stream.isWriting)

{

stream.SendNext(currentlyEquippedItemName);

}

else

{

this.currentlyEquippedItemName = (string)stream.ReceiveNext();

}

}

}

(!) drag and drop the ‘masks’ object with all the mask-children onto the ‘All Item
Container’ slot on Equipment Group.

>>
‘Masks’ onto ‘All item Container’

(!) In player_avatar’s PhotonView, hit the small ‘+’ icon on ‘Observed Components’ to
create a new slot

>>
Click the plus to add a second slot!

(!) drag and drop Equipment Group onto the new slot in the PhotonView

>>

(!) hit ‘Apply’ on the player_avatar prefab

(!) hide ‘player_avatar’

Now try running the game, selecting the your player_avatar(clone) object, and setting the value
of ‘Currently Equipped’ on the EquipmentGroup component, and you should see the mask
changing, and appearing over the network.

(Optional) You can actually reuse EquipmentGroup for multiple kind of equipment (shields,
haircuts). Just add an additional EquipmentGroup component, and an additional child container
of possible items and do the same steps as above

If you were going to also add haircuts...

You’d add another set of children like masks...

A second EquipmentGroup componenent...

And add the second EquipmentGroup to observed components (yes, a little weird/redundant
looking)

Making Collectible Equipment Items in the World

(!) Drag and drop one of your masks into the world.

I called mine tengu_mask_item

(!) Add a sphere collider and check isTrigger

(!) Add a new script called ‘CollectibleItem’

(!) In this script, and fill as below

using System.Collections;

using System.Collections.Generic;

using UnityEngine;

public class CollectibleItem : MonoBehaviour

{

public string itemName; //the item the collecting player will receive

private void OnTriggerEnter(Collider other)

{

//if a player touches us…
if (other.GetComponent<CharacterSheet>() != null &&

other.GetComponent<PhotonView>().isMine)

{

//give it the item

other.GetComponent<CharacterSheet>().receiveItem(this.itemName);

Destroy(this.gameObject);

}

}

}

The function receiveItem, in characterSheet doesn’t exist yet, let’s add it.

(!) Open CharacterSheet and add a new function receiveItem(string itemName)

...

public void receiveItem(string itemName)

{

foreach(EquipmentGroup equipmentGroup in

this.GetComponents<EquipmentGroup>())

{

if (equipmentGroup.hasItem(itemName))

{

equipmentGroup.currentlyEquippedItemName = itemName;

}

}

}

...

This should fix the error caused when you created CollectibleItem

(!) On the collectible object you created… change the value of ‘Item Name’ to the name
of one of your masks.

Now, if a player hits an item, their equipped item in EquipmentGroup changes to the item
specified by CollectibleItem, and the CollectibleItem object disappears.

Bonus: Here’s a link to a fancier version of this project (a little messy)

https://drive.google.com/open?id=0BzsEOivZ9PwdMjVEbVc2UGZCSDA

